1
David A Edwards, Giovanni Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Abdell Aziz Ben Jebria, Robert S Langer: Aerodynamically light particles for pulmonary drug delivery. Massachusetts Institute of Technology, The Penn State Research Foundation, Arnall Golden & Gregory, February 23, 1999: US05874064 (249 worldwide citation)


Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm.sup.3 and ...


2
David A Edwards, Giovanni Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Abdell Aziz Ben Jebria, Robert S Langer: Aerodynamically light particles for pulmonary drug delivery. Massachusetts Institute of Technology, Penn State Research Foundation, Hamilton Brook Smith & Reynolds P C, October 24, 2000: US06136295 (153 worldwide citation)


Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm.sup.3 and ...


3
David A Edwards, Giovanni Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Robert S Langer, Abdellaziz Ben Jebria: Porous particles for deep lung delivery. The Penn Research Foundation, Hamilton Brook Smith & Reynolds P C, July 3, 2001: US06254854 (93 worldwide citation)


Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm


4
David A Edwards, Giovannia Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Abdell Aziz Ben Jebria, Robert S Langer: Aerodynamically light particles for pulmonary drug delivery. Massachusetts Institute of Technology, The Penn State Research Foundation, Hamilton Brook Smith & Reynolds P C, January 7, 2003: US06503480 (73 worldwide citation)


Improved aerodynamically light particles for delivery to the pulmonary system, and methods for their preparation and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm


5
David A Edwards, Giovanni Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Robert S Langer, Abdellaziz Ben Jebria: Porous particles for deep lung delivery. The Penn Research Foundation, Massachusetts Institute of Technology, Hamilton Brook Smith & Reynolds P C, September 10, 2002: US06447753 (71 worldwide citation)


Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm


6
Jeffrey S Hrkach, Robert S Langer, Noah Lotan: Functionalized polyester graft copolymers. Massachusetts Institute of Technology, Arnall Golden & Gregory, August 5, 1997: US05654381 (71 worldwide citation)


Synthetic, functionalized, graft copolymers of polyesters and amino acids are provided. The copolymers are formed in one embodiment by providing a linear polyester-poly(amino acid) copolymer, and reacting the amino acid groups in the linear polymer with an amino acid derivative in a polymerization r ...


7
David A Edwards, Giovanni Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Abdellaziz Ben Jebria, Robert S Langer: Aerodynamically light particles for pulmonary drug delivery. October 21, 2003: US06635283 (65 worldwide citation)


Improved aerodynamically light particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of biodegradable material and have a tap density of less than 0.4 g/cm


8
David A Edwards, Giovanni Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Robert S Langer, Abdellaziz Ben Jebria: Porous particles comprising excipients for deep lung delivery. The Penn Research Foundation, Massachesetts Institute of Technology, Hamilton Brook Smith & Reynolds P C, August 20, 2002: US06436443 (37 worldwide citation)


Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm


9
Sarit Sivan, Uri Dinnar, Noah Lotan: Intravascular apparatus method. Technion Research & Development Foundation, G E Ehrlich, May 27, 2003: US06569688 (28 worldwide citation)


Intravascular apparatus and method for locally treating a patient's blood vessel, are provided. The apparatus includes an implanted carrier (


10
David A Edwards, Giovanni Caponetti, Jeffrey S Hrkach, Noah Lotan, Justin Hanes, Robert S Langer, Abdellaziz Ben Jebria: Amorphous porous particles for deep lung delivery. The Penn State Research Foundation, Massachusetts Institute of Technology, Hamilton Brook Smith & Reynolds P C, September 10, 2002: US06447752 (15 worldwide citation)


Improved porous particles for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the porous particles are made of a biodegradable material and have a mass density less than 0.4 g/cm



Click the thumbnails below to visualize the patent trend.